Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 119(15): 2522-2535, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37739930

RESUMEN

AIMS: Long QT syndrome type 2 (LQTS2) is associated with inherited variants in the cardiac human ether-à-go-go-related gene (hERG) K+ channel. However, the pathogenicity of hERG channel gene variants is often uncertain. Using CRISPR-Cas9 gene-edited hiPSC-derived cardiomyocytes (hiPSC-CMs), we investigated the pathogenic mechanism underlying the LQTS-associated hERG R56Q variant and its phenotypic rescue by using the Type 1 hERG activator, RPR260243. METHODS AND RESULTS: The above approaches enable characterization of the unclear causative mechanism of arrhythmia in the R56Q variant (an N-terminal PAS domain mutation that primarily accelerates channel deactivation) and translational investigation of the potential for targeted pharmacologic manipulation of hERG deactivation. Using perforated patch clamp electrophysiology of single hiPSC-CMs, programmed electrical stimulation showed that the hERG R56Q variant does not significantly alter the mean action potential duration (APD90). However, the R56Q variant increases the beat-to-beat variability in APD90 during pacing at constant cycle lengths, enhances the variance of APD90 during rate transitions, and increases the incidence of 2:1 block. During paired S1-S2 stimulations measuring electrical restitution properties, the R56Q variant was also found to increase the variability in rise time and duration of the response to premature stimulations. Application of the hERG channel activator, RPR260243, reduces the APD variance in hERG R56Q hiPSC-CMs, reduces the variability in responses to premature stimulations, and increases the post-repolarization refractoriness. CONCLUSION: Based on our findings, we propose that the hERG R56Q variant leads to heterogeneous APD dynamics, which could result in spatial dispersion of repolarization and increased risk for re-entry without significantly affecting the average APD90. Furthermore, our data highlight the antiarrhythmic potential of targeted slowing of hERG deactivation gating, which we demonstrate increases protection against premature action potentials and reduces electrical heterogeneity in hiPSC-CMs.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Síndrome de QT Prolongado , Humanos , Canales de Potasio Éter-A-Go-Go/genética , Síndrome de QT Prolongado/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevención & control , Miocitos Cardíacos , Potenciales de Acción , Éteres , Canal de Potasio ERG1/genética
2.
Eur Heart J ; 43(45): 4739-4750, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200607

RESUMEN

AIMS: In response to pro-fibrotic signals, scleraxis regulates cardiac fibroblast activation in vitro via transcriptional control of key fibrosis genes such as collagen and fibronectin; however, its role in vivo is unknown. The present study assessed the impact of scleraxis loss on fibroblast activation, cardiac fibrosis, and dysfunction in pressure overload-induced heart failure. METHODS AND RESULTS: Scleraxis expression was upregulated in the hearts of non-ischemic dilated cardiomyopathy patients, and in mice subjected to pressure overload by transverse aortic constriction (TAC). Tamoxifen-inducible fibroblast-specific scleraxis knockout (Scx-fKO) completely attenuated cardiac fibrosis, and significantly improved cardiac systolic function and ventricular remodelling, following TAC compared to Scx+/+ TAC mice, concomitant with attenuation of fibroblast activation. Scleraxis deletion, after the establishment of cardiac fibrosis, attenuated the further functional decline observed in Scx+/+ mice, with a reduction in cardiac myofibroblasts. Notably, scleraxis knockout reduced pressure overload-induced mortality from 33% to zero, without affecting the degree of cardiac hypertrophy. Scleraxis directly regulated transcription of the myofibroblast marker periostin, and cardiac fibroblasts lacking scleraxis failed to upregulate periostin synthesis and secretion in response to pro-fibrotic transforming growth factor ß. CONCLUSION: Scleraxis governs fibroblast activation in pressure overload-induced heart failure, and scleraxis knockout attenuated fibrosis and improved cardiac function and survival. These findings identify scleraxis as a viable target for the development of novel anti-fibrotic treatments.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Ratones , Animales , Fibrosis , Miofibroblastos/metabolismo , Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Insuficiencia Cardíaca/patología , Miocardio/patología , Ratones Endogámicos C57BL
3.
Cells ; 11(9)2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563778

RESUMEN

Fibrosis is an energy-intensive process requiring the activation of fibroblasts to myofibroblasts, resulting in the increased synthesis of extracellular matrix proteins. Little is known about the transcriptional control of energy metabolism in cardiac fibroblast activation, but glutaminolysis has been implicated in liver and lung fibrosis. Here we explored how pro-fibrotic TGFß and its effector scleraxis, which drive cardiac fibroblast activation, regulate genes involved in glutaminolysis, particularly the rate-limiting enzyme glutaminase (GLS1). The GLS1 inhibitor CB-839 attenuated TGFß-induced fibroblast activation. Cardiac fibroblast activation to myofibroblasts by scleraxis overexpression increased glutaminolysis gene expression, including GLS1, while cardiac fibroblasts from scleraxis-null mice showed reduced expression. TGFß induced GLS1 expression and increased intracellular glutamine and glutamate levels, indicative of increased glutaminolysis, but in scleraxis knockout cells, these measures were attenuated, and the response to TGFß was lost. The knockdown of scleraxis in activated cardiac fibroblasts reduced GLS1 expression by 75%. Scleraxis transactivated the human GLS1 promoter in luciferase reporter assays, and this effect was dependent on a key scleraxis-binding E-box motif. These results implicate scleraxis-mediated GLS1 expression as a key regulator of glutaminolysis in cardiac fibroblast activation, and blocking scleraxis in this process may provide a means of starving fibroblasts of the energy required for fibrosis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Glutaminasa , Fibrosis Pulmonar , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibroblastos/metabolismo , Glutaminasa/genética , Ratones , Miofibroblastos/metabolismo , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Cell Mol Life Sci ; 79(4): 193, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35298717

RESUMEN

Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPß, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPß overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPß can be a promising therapeutic approach.


Asunto(s)
Envejecimiento/metabolismo , Axones/patología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Metabolismo Energético , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Axones/efectos de los fármacos , Axones/metabolismo , Secuencia de Bases , Proteína beta Potenciadora de Unión a CCAAT/genética , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Metabolismo Energético/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Hígado/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factores de Transcripción NFATC/metabolismo , Proyección Neuronal/efectos de los fármacos , Polímeros/metabolismo , Regiones Promotoras Genéticas/genética , Transporte de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley , Células Receptoras Sensoriales/patología , Transducción de Señal/efectos de los fármacos
5.
Cell Tissue Res ; 385(3): 753-768, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34057573

RESUMEN

Fibroblast growth factor 2 (FGF2), produced as high (Hi-) and low (Lo-) molecular weight isoforms, is implicated in cardiac response to injury. The role of endogenous FGF2 isoforms during chronic stress is not well defined. We investigated the effects of endogenous Hi-FGF2 in a mouse model of simulated pressure-overload stress achieved by transverse aortic constriction (TAC) surgery. Hi-FGF2 knockout mice, expressing only Lo-FGF2, FGF2(Lo), and wild-type mice, FGF2(WT), expressing both Hi-FGF2 and Lo-FGF2, were used. By echocardiography, a decline in systolic function was observed in FGF2(WT) but not FGF2(Lo) mice compared to corresponding sham-operated animals at 4-8 weeks post-TAC surgery. TAC surgery increased markers of myocardial stress/damage including B-type natriuretic peptide (BNP) and the pro-cell death protein BCL2/adenovirus E1B 19 kDa protein-interacting protein-3 (Bnip3) in FGF2(WT) but not FGF2(Lo) mice. In FGF2(Lo) mice, cardiac levels of activated FGF receptor 1 (FGFR1), and downstream signals, including phosphorylated mTOR and p70S6 kinase, were elevated post-TAC. Finally, NR1D1 (nuclear receptor subfamily 1 group D member 1), implicated in cardioprotection from pressure-overload stress, was downregulated or upregulated in the presence or absence, respectively, of Hi-FGF2 expression, post-TAC surgery. In wild-type cardiomyocyte cultures, endothelin-1 (added to simulate pressure-overload signals) caused NR1D1 downregulation and BNP upregulation, similar to the effect of TAC surgery on the FGF2(WT) mice. The NR1D1 agonist SR9009 prevented BNP upregulation, simulating post-TAC findings in FGF2(Lo) mice. We propose that elimination of Hi-FGF2 is cardioprotective during pressure-overload by increasing FGFR1-associated signaling and NR1D1 expression.


Asunto(s)
Presión Sanguínea/genética , Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados , Ratas , Transducción de Señal
6.
Can J Physiol Pharmacol ; 98(7): 459-465, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32027517

RESUMEN

Interstitial fibrosis is a histopathological hallmark of hypertrophic cardiomyopathy (HCM). Although extracellular matrix (ECM) biomarkers, including matrix metalloproteinases, are overexpressed in HCM patients, they do not correlate with sudden cardiac death (SCD) risk. The objective of this study was to determine whether scleraxis, a transcription factor that regulates collagen gene expression, is detectable in HCM patients and correlates with disease burden. Between 2017 and 2018, a total of 46 HCM patients were enrolled (58 ± 14 years (31 males, 15 females)) with a mean 5 year SCD risk of 2.3% ± 1.3%. Cardiac MRI confirmed HCM in all patients with a mean interventricular septal thickness of 20 ± 2 mm. Late gadolinium enhancement (LGE) was present in 32 (70%) study participants occupying 18% ± 7% of the left ventricular (LV) myocardium. Serum scleraxis levels were significantly higher in the HCM patients by approximately twofold as compared to controls (0.76 ± 0.06 versus 0.32 ± 0.02 ng/mL, p < 0.05). No correlation was demonstrated between serum scleraxis levels and markers of disease severity in HCM patients, including maximum LV wall thickness, %LGE, and SCD risk factors. Serum scleraxis is elevated in the HCM population. Future studies are warranted to evaluate the prognostic value of scleraxis in identifying high-risk HCM patients who require aggressive management for prevention of SCD.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/sangre , Cardiomiopatía Hipertrófica/diagnóstico , Ventrículos Cardíacos/patología , Miocardio/patología , Adulto , Anciano , Biomarcadores/sangre , Cardiomiopatía Hipertrófica/sangre , Cardiomiopatía Hipertrófica/patología , Medios de Contraste/administración & dosificación , Ecocardiografía Doppler en Color , Femenino , Fibrosis , Gadolinio DTPA/administración & dosificación , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Pronóstico , Factores de Riesgo , Índice de Severidad de la Enfermedad
7.
Can J Physiol Pharmacol ; 97(6): 493-497, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30468625

RESUMEN

Fibroblasts have long been recognized as important stromal cells, playing key roles in synthesizing and maintaining the extracellular matrix, but historically were treated as a relatively uniform cell type. Studies in recent years have revealed a surprising level of heterogeneity of fibroblasts across tissues, and even within organs such as the skin and heart. This heterogeneity may have functional consequences, including during stress and disease. While the field has moved forward quickly to begin to address the scientific import of this heterogeneity, the descriptive language used for these cells has not kept pace, particularly when considering the phenotype changes that occur as fibroblasts convert to myofibroblasts in response to injury. We discuss here the nature and sources of the heterogeneity of fibroblasts, and review how our understanding of the complexity of the fibroblast to myofibroblast phenotype conversion has changed with increasing scrutiny. We propose that the time is opportune to reevaluate how we name and describe these cells, particularly as they transition to myofibroblasts through discrete stages. A standardized nomenclature is essential to address the confusion that currently exists in the literature as to the usage of terms like myofibroblast and the description of fibroblast phenotype changes in disease.


Asunto(s)
Fibroblastos/citología , Fenotipo , Terminología como Asunto , Animales , Humanos
8.
Am J Physiol Heart Circ Physiol ; 315(3): H658-H668, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906225

RESUMEN

Numerous physiological and pathological events, from organ development to cancer and fibrosis, are characterized by an epithelial-to-mesenchymal transition (EMT), whereby adherent epithelial cells convert to migratory mesenchymal cells. During cardiac development, proepicardial organ epithelial cells undergo EMT to generate fibroblasts. Subsequent stress or damage induces further phenotype conversion of fibroblasts to myofibroblasts, causing fibrosis via synthesis of an excessive extracellular matrix. We have previously shown that the transcription factor scleraxis is both sufficient and necessary for the conversion of cardiac fibroblasts to myofibroblasts and found that scleraxis knockout reduced cardiac fibroblast numbers by 50%, possibly via EMT attenuation. Scleraxis induced expression of the EMT transcriptional regulators Twist1 and Snai1 via an unknown mechanism. Here, we report that scleraxis binds to E-box consensus sequences within the Twist1 and Snai1 promoters to transactivate these genes directly. Scleraxis upregulates expression of both genes in A549 epithelial cells and in cardiac myofibroblasts. Transforming growth factor-ß induces EMT, fibrosis, and scleraxis expression, and we found that transforming growth factor-ß-mediated upregulation of Twist1 and Snai1 completely depends on the presence of scleraxis. Snai1 knockdown upregulated the epithelial marker E-cadherin; however, this effect was lost after scleraxis overexpression, suggesting that scleraxis may repress E-cadherin expression. Together, these results indicate that scleraxis can regulate EMT via direct transactivation of the Twist1 and Snai1 genes. Given the role of scleraxis in also driving the myofibroblast phenotype, scleraxis appears to be a critical controller of fibroblast genesis and fate in the myocardium and thus may play key roles in wound healing and fibrosis. NEW & NOTEWORTHY The molecular mechanism by which the transcription factor scleraxis mediates Twist1 and Snai1 gene expression was determined. These results reveal a novel means of transcriptional regulation of epithelial-to-mesenchymal transition and demonstrate that transforming growth factor-ß-mediated epithelial-to-mesenchymal transition is dependent on scleraxis, providing a potential target for controlling this process.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transición Epitelial-Mesenquimal , Proteínas Nucleares/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Células 3T3 , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Células Cultivadas , Humanos , Masculino , Ratones , Miofibroblastos/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Unión Proteica , Ratas , Ratas Sprague-Dawley , Factores de Transcripción de la Familia Snail/genética , Proteína 1 Relacionada con Twist/genética
9.
J Mol Cell Cardiol ; 120: 64-73, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29750994

RESUMEN

Remodeling of the cardiac extracellular matrix is responsible for a number of the detrimental effects on heart function that arise secondary to hypertension, diabetes and myocardial infarction. This remodeling consists both of an increase in new matrix protein synthesis, and an increase in the expression of matrix metalloproteinases (MMPs) that degrade existing matrix structures. Previous studies utilizing knockout mice have demonstrated clearly that MMP2 plays a pathogenic role during matrix remodeling, thus it is important to understand the mechanisms that regulate MMP2 gene expression. We have shown that the transcription factor scleraxis is an important inducer of extracellular matrix gene expression in the heart that may also control MMP2 expression. In the present study, we demonstrate that scleraxis directly transactivates the proximal MMP2 gene promoter, resulting in increased histone acetylation, and identify a specific E-box sequence in the promoter to which scleraxis binds. Cardiac myo-fibroblasts isolated from scleraxis knockout mice exhibited dramatically decreased MMP2 expression; however, scleraxis over-expression in knockout cells could rescue this loss. We further show that regulation of MMP2 gene expression by the pro-fibrotic cytokine TGFß occurs via a scleraxis-dependent mechanism: TGFß induces recruitment of scleraxis to the MMP2 promoter, and TGFß was unable to up-regulate MMP2 expression in cells lacking scleraxis due to either gene knockdown or knockout. These results reveal that scleraxis can exert control over both extracellular matrix synthesis and breakdown, and thus may contribute to matrix remodeling in wound healing and disease.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica , Metaloproteinasa 2 de la Matriz/genética , Miocardio/citología , Miofibroblastos/fisiología , Análisis de Varianza , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos E-Box/fisiología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Vectores Genéticos , Humanos , Masculino , Ratones , Ratones Noqueados , Células 3T3 NIH , Regiones Promotoras Genéticas , Ratas , Ratas Sprague-Dawley , Activación Transcripcional , Transfección , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
12.
Am J Physiol Cell Physiol ; 311(2): C297-307, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27357547

RESUMEN

The phenotype conversion of fibroblasts to myofibroblasts plays a key role in the pathogenesis of cardiac fibrosis. Numerous triggers of this conversion process have been identified, including plating of cells on solid substrates, cytokines such as transforming growth factor-ß, and mechanical stretch; however, the underlying mechanisms remain incompletely defined. Recent studies from our laboratory revealed that the transcription factor scleraxis is a key regulator of cardiac fibroblast phenotype and extracellular matrix expression. Here we report that mechanical stretch induces type I collagen expression and morphological changes indicative of cardiac myofibroblast conversion, as well as scleraxis expression via activation of the scleraxis promoter. Scleraxis causes phenotypic changes similar to stretch, and the effect of stretch is attenuated in scleraxis null cells. Scleraxis was also sufficient to upregulate expression of vinculin and F-actin, to induce stress fiber and focal adhesion formation, and to attenuate both cell migration and proliferation, further evidence of scleraxis-mediated regulation of fibroblast to myofibroblast conversion. Together, these data confirm that scleraxis is sufficient to promote the myofibroblast phenotype and is a required effector of stretch-mediated conversion. Scleraxis may thus represent a potential target for the development of novel antifibrotic therapies aimed at inhibiting myofibroblast formation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corazón/fisiología , Miofibroblastos/metabolismo , Miofibroblastos/fisiología , Actinas/genética , Actinas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Adhesiones Focales/fisiología , Regulación de la Expresión Génica/genética , Masculino , Ratones , Miocardio/metabolismo , Células 3T3 NIH , Fenotipo , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
13.
J Mol Cell Cardiol ; 93: 108-14, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26640115

RESUMEN

Unlike most somatic tissues, the heart possesses a very limited inherent ability to repair itself following damage. Attempts to therapeutically salvage the myocardium after infarction, either by sparing surviving myocytes or by injection of exogenous cells of varied provenance, have met with limited success. Cardiac fibroblasts are numerous, resistant to hypoxia, and amenable to phenotype reprogramming to cardiomyocytes - a potential panacea to an intractable problem. However, the long-term effects of mass conversion of fibroblasts are as-yet unknown. Since fibroblasts play key roles in normal cardiac function, treating these cells as a ready source of replacements for myocytes may have the effect of swapping one problem for another. This review briefly examines the roles of cardiac fibroblasts, recaps the strides made so far in their reprogramming to cardiomyocytes both in vitro and in vivo, and discusses the potential ramifications of large-scale cellular identity swapping. While such therapy offers great promise, the potential repercussions require consideration and careful study.


Asunto(s)
Transdiferenciación Celular , Reprogramación Celular , Fibroblastos/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Cicatrización de Heridas , Animales , Fibroblastos/citología , Humanos , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Fenotipo
14.
Mol Cell Biol ; 36(5): 678-92, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26667039

RESUMEN

Tissue fibrosis is a major cause of organ dysfunction during chronic diseases and aging. A critical step in this process is transforming growth factor ß1 (TGF-ß1)-mediated transformation of fibroblasts into myofibroblasts, cells capable of synthesizing extracellular matrix. Here, we show that SIRT3 controls transformation of fibroblasts into myofibroblasts via suppressing the profibrotic TGF-ß1 signaling. We found that Sirt3 knockout (KO) mice with age develop tissue fibrosis of multiple organs, including heart, liver, kidney, and lungs but not whole-body SIRT3-overexpressing mice. SIRT3 deficiency caused induction of TGF-ß1 expression and hyperacetylation of glycogen synthase kinase 3ß (GSK3ß) at residue K15, which negatively regulated GSK3ß activity to phosphorylate the substrates Smad3 and ß-catenin. Reduced phosphorylation led to stabilization and activation of these transcription factors regulating expression of the profibrotic genes. SIRT3 deacetylated and activated GSK3ß and thereby blocked TGF-ß1 signaling and tissue fibrosis. These data reveal a new role of SIRT3 to negatively regulate aging-associated tissue fibrosis and discloses a novel phosphorylation-independent mechanism controlling the catalytic activity of GSK3ß.


Asunto(s)
Envejecimiento , Fibroblastos/patología , Glucógeno Sintasa Quinasa 3/metabolismo , Miofibroblastos/patología , Sirtuina 3/metabolismo , Acetilación , Adulto , Animales , Células Cultivadas , Activación Enzimática , Fibroblastos/citología , Fibroblastos/metabolismo , Fibrosis , Glucógeno Sintasa Quinasa 3 beta , Humanos , Riñón/citología , Riñón/metabolismo , Riñón/patología , Hígado/citología , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Miocardio/citología , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/citología , Miofibroblastos/metabolismo , Fosforilación , Transducción de Señal , Sirtuina 3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , beta Catenina/metabolismo
15.
J Biol Chem ; 289(39): 27199-27215, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25104350

RESUMEN

Understanding the regulation of cardiac fibrosis is critical for controlling adverse cardiac remodeling during heart failure. Previously we identified miR-378 as a cardiomyocyte-abundant miRNA down-regulated in several experimental models of cardiac hypertrophy and in patients with heart failure. To understand the consequence of miR-378 down-regulation during cardiac remodeling, our current study employed a locked nucleic acid-modified antimiR to target miR-378 in vivo. Results showed development of cardiomyocyte hypertrophy and fibrosis in mouse hearts. Mechanistically, miR-378 depletion was found to induce TGFß1 expression in mouse hearts and in cultured cardiomyocytes. Among various secreted cytokines in the conditioned-media of miR-378-depleted cardiomyocytes, only TGFß1 levels were found to be increased. The increase was prevented by miR-378 expression. Treatment of cardiac fibroblasts with the conditioned media of miR-378-depleted myocytes activated pSMAD2/3 and induced fibrotic gene expression. This effect was counteracted by including a TGFß1-neutralizing antibody in the conditioned-medium. In cardiomyocytes, adenoviruses expressing dominant negative N-Ras or c-Jun prevented antimiR-mediated induction of TGFß1 mRNA, documenting the importance of Ras and AP-1 signaling in this response. Our study demonstrates that reduction of miR-378 during pathological conditions contributes to cardiac remodeling by promoting paracrine release of profibrotic cytokine, TGFß1 from cardiomyocytes. Our data imply that the presence in cardiomyocyte of miR-378 plays a critical role in the protection of neighboring fibroblasts from activation by pro-fibrotic stimuli.


Asunto(s)
Fibrosis Endomiocárdica/metabolismo , MicroARNs/biosíntesis , Miocitos Cardíacos/metabolismo , Comunicación Paracrina , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Caenorhabditis elegans , Células Cultivadas , Fibrosis Endomiocárdica/genética , Fibrosis Endomiocárdica/patología , Regulación de la Expresión Génica/genética , Ratones , MicroARNs/genética , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta1/genética
16.
J Biol Chem ; 288(16): 11216-32, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23447532

RESUMEN

Understanding the regulation of cardiomyocyte growth is crucial for the management of adverse ventricular remodeling and heart failure. MicroRNA-378 (miR-378) is a newly described member of the cardiac-enriched miRNAs, which is expressed only in cardiac myocytes and not in cardiac fibroblasts. We have previously shown that miR-378 regulates cardiac growth during the postnatal period by direct targeting of IGF1R (Knezevic, I., Patel, A., Sundaresan, N. R., Gupta, M. P., Solaro, R. J., Nagalingam, R. S., and Gupta, M. (2012) J. Biol. Chem. 287, 12913-12926). Here, we report that miR-378 is an endogenous negative regulator of cardiac hypertrophy, and its levels are down-regulated during hypertrophic growth of the heart and during heart failure. In primary cultures of cardiomyocytes, overexpression of miR-378 blocked phenylephrine (PE)-stimulated Ras activity and also prevented activation of two major growth-promoting signaling pathways, PI3K-AKT and Raf1-MEK1-ERK1/2, acting downstream of Ras signaling. Overexpression of miR-378 suppressed PE-induced phosphorylation of S6 ribosomal kinase, pERK1/2, pAKT, pGSK-3ß, and nuclear accumulation of NFAT. There was also suppression of the fetal gene program that was induced by PE. Experiments carried out to delineate the mechanism behind the suppression of Ras, led us to identify Grb2, an upstream component of Ras signaling, as a bona fide direct target of miR-378-mediated regulation. Deficiency of miR-378 alone was sufficient to induce fetal gene expression, which was prevented by knocking down Grb2 expression and blocking Ras activation, thus suggesting that miR-378 interferes with Ras activation by targeting Grb2. Our study demonstrates that miR-378 is an endogenous negative regulator of Ras signaling and cardiac hypertrophy and its deficiency contributes to the development of cardiac hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Proteínas Musculares/metabolismo , Proteínas ras/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/efectos adversos , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/patología , Células Cultivadas , Proteína Adaptadora GRB2/biosíntesis , Proteína Adaptadora GRB2/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , MicroARNs/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Musculares/genética , Fenilefrina/efectos adversos , Fenilefrina/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-raf , Ratas , Ratas Sprague-Dawley , Proteínas ras/genética
17.
J Biol Chem ; 287(16): 12913-26, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22367207

RESUMEN

Postnatal cardiac remodeling is characterized by a marked decrease in the insulin-like growth factor 1 (IGF1) and IGF1 receptor (IGF1R) expression. The underlying mechanism remains unexplored. This study examined the role of microRNAs in postnatal cardiac remodeling. By expression profiling, we observed a 10-fold increase in miR-378 expression in 1-week-old neonatal mouse hearts compared with 16-day-old fetal hearts. There was also a 4-6-fold induction in expression of miR-378 in older (10 months) compared with younger (1 month) hearts. Interestingly, tissue distribution analysis identified miR-378 to be highly abundant in heart and skeletal muscles. In the heart, specific expression was observed in cardiac myocytes, which was inducible by a variety of stressors. Overexpression of miR-378 enhanced apoptosis of cardiomyocytes by direct targeting of IGF1R and reduced signaling in Akt cascade. The inhibition of miR-378 by its anti-miR protected cardiomyocytes against H(2)O(2) and hypoxia reoxygenation-induced cell death by promoting IGF1R expression and downstream Akt signaling cascade. Additionally, our data show that miR-378 expression is inhibited by IGF1 in cardiomyocytes. In tissues such as fibroblasts and fetal hearts, where IGF1 levels are high, we found either absent or significantly low miR-378 levels, suggesting an inverse relationship between these two factors. Our study identifies miR-378 as a new cardioabundant microRNA that targets IGF1R. We also demonstrate the existence of a negative feedback loop between miR-378, IGF1R, and IGF1 that is associated with postnatal cardiac remodeling and with the regulation of cardiomyocyte survival during stress.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/fisiología , MicroARNs/metabolismo , Miocitos Cardíacos/fisiología , Receptor IGF Tipo 1/metabolismo , Remodelación Ventricular/genética , Animales , Apoptosis/fisiología , Secuencia de Bases , Supervivencia Celular/fisiología , Células Cultivadas , Corazón/crecimiento & desarrollo , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia/fisiopatología , Ratones , MicroARNs/genética , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA